## Vad är en rotationsvolym?
När ett område i planet **roterar** kring en axel skapas en tredimensionell kropp. Volymen av denna kropp kallas **rotationsvolym**.
```tikz
\begin{document}
\begin{tikzpicture}[scale=1.1]
% Vänster: 2D-kurvan
\begin{scope}[xshift=0cm]
\draw[->, thick] (-0.3,0) -- (3.5,0) node[right] {$x$};
\draw[->, thick] (0,-0.3) -- (0,2.5) node[above] {$y$};
\fill[blue!20] (0.5,0) -- plot[domain=0.5:3, samples=50] (\x, {0.4*sqrt(\x)+0.3}) -- (3,0) -- cycle;
\draw[blue, very thick, domain=0.3:3.2, samples=100] plot (\x, {0.4*sqrt(\x)+0.3});
\node[blue] at (2.5, 1.8) {$y = f(x)$};
\node at (1.7, -0.8) {\textbf{2D: Område}};
\end{scope}
% Pil
\draw[->, ultra thick, red!70!black] (4, 1) -- (5.5, 1);
\node[red!70!black] at (4.75, 1.5) {\small rotation};
% Höger: 3D-kroppen (förenklad vy)
\begin{scope}[xshift=6.5cm]
\draw[->, thick] (-0.3,0) -- (3.5,0) node[right] {$x$};
\draw[->, thick] (0,-2) -- (0,2.3) node[above] {$y$};
% Övre kontur
\draw[blue, very thick, domain=0.5:3, samples=100] plot (\x, {0.4*sqrt(\x)+0.3});
% Undre kontur (spegling)
\draw[blue, very thick, domain=0.5:3, samples=100] plot (\x, {-0.4*sqrt(\x)-0.3});
% Ellipser för 3D-effekt
\draw[blue, thick] (0.5, 0) ellipse (0.08 and 0.5);
\draw[blue, thick] (3, 0) ellipse (0.12 and 0.99);
\draw[blue, thick, dashed] (1.75, 0) ellipse (0.1 and 0.83);
% Skuggning
\fill[blue!10, opacity=0.5] (0.5, 0.5) -- plot[domain=0.5:3, samples=50] (\x, {0.4*sqrt(\x)+0.3}) -- (3, 0.99) arc (90:-90:0.12 and 0.99) -- plot[domain=3:0.5, samples=50] (\x, {-0.4*sqrt(\x)-0.3}) -- (0.5, -0.5) arc (-90:90:0.08 and 0.5);
\node at (1.7, -2.5) {\textbf{3D: Rotationskropp}};
\end{scope}
\end{tikzpicture}
\end{document}
```
---
## De två metoderna
### Skivmetoden
Tänk dig att kroppen byggs upp av tunna cirkulära **skivor**.
```tikz
\begin{document}
\begin{tikzpicture}[scale=1.3]
% Axlar
\draw[->, thick, gray] (-0.5,0) -- (5.5,0) node[right] {$x$};
\draw[->, thick, gray] (0,-2.2) -- (0,2.5) node[above] {$y$};
% Rotationskroppens konturer
\draw[blue!70, very thick, domain=0.3:5, samples=100] plot (\x, {0.5*sqrt(\x)+0.2});
\draw[blue!70, very thick, domain=0.3:5, samples=100] plot (\x, {-0.5*sqrt(\x)-0.2});
% Flera skivor
\foreach \x/\op in {0.8/0.3, 1.5/0.4, 2.3/0.5, 3.2/0.6, 4.2/0.7} {
\pgfmathsetmacro{\r}{0.5*sqrt(\x)+0.2}
\fill[red!40, opacity=\op] (\x, 0) ellipse (0.15 and \r);
\draw[red!70!black, thick] (\x, 0) ellipse (0.15 and \r);
}
% En markerad skiva
\fill[orange!60] (3.2, 0) ellipse (0.15 and 1.09);
\draw[orange!80!black, very thick] (3.2, 0) ellipse (0.15 and 1.09);
% Radie
\draw[<->, green!50!black, very thick] (3.2, 0) -- (3.2, 1.09);
\node[green!50!black] at (3.6, 0.55) {$r = f(x)$};
% Tjocklek
\draw[<->, purple, thick] (3.05, -1.5) -- (3.35, -1.5);
\node[purple] at (3.2, -1.8) {$dx$};
% Formel
\node[draw, fill=white, rounded corners] at (2.5, 2.2) {$dV = \pi r^2 \cdot dx = \pi[f(x)]^2 dx$};
\end{tikzpicture}
\end{document}
```
$\boxed{V = \pi \int_a^b [f(x)]^2 , dx}$
---
### Skalmetoden
Tänk dig cylindriska **skal** (rör) som sitter inuti varandra.
```tikz
\begin{document}
\begin{tikzpicture}[scale=1.2]
% Axlar
\draw[->, thick, gray] (-0.5,0) -- (4,0) node[right] {$x$};
\draw[->, thick, gray] (0,-0.5) -- (0,3.5) node[above] {$y$};
% Området som roteras
\fill[blue!15] (0,0) -- plot[domain=0:2.8, samples=50] (\x, {-0.25*(\x-1.4)^2 + 2.5}) -- (2.8,0) -- cycle;
\draw[blue, very thick, domain=0:3, samples=100] plot (\x, {-0.25*(\x-1.4)^2 + 2.5});
% Cylindriska skal
\foreach \r/\col in {0.6/red!30, 1.2/orange!40, 1.8/yellow!50, 2.4/green!30} {
\pgfmathsetmacro{\h}{-0.25*(\r-1.4)^2 + 2.5}
\fill[\col] (\r-0.08, 0) rectangle (\r+0.08, \h);
\draw[black!50, thick] (\r-0.08, 0) -- (\r-0.08, \h);
\draw[black!50, thick] (\r+0.08, 0) -- (\r+0.08, \h);
\draw[black!50, thick] (\r-0.08, \h) -- (\r+0.08, \h);
}
% Ett markerat skal
\pgfmathsetmacro{\rmark}{1.8}
\pgfmathsetmacro{\hmark}{-0.25*(\rmark-1.4)^2 + 2.5}
\fill[red!50] (\rmark-0.1, 0) rectangle (\rmark+0.1, \hmark);
\draw[red!80!black, very thick] (\rmark-0.1, 0) rectangle (\rmark+0.1, \hmark);
% Markeringar
\draw[<->, green!50!black, very thick] (0, -0.3) -- (\rmark, -0.3);
\node[green!50!black] at (0.9, -0.6) {$x$};
\draw[<->, purple, very thick] (2.1, 0) -- (2.1, \hmark);
\node[purple] at (2.5, 1.2) {$f(x)$};
\draw[<->, orange, thick] (\rmark-0.1, 2.7) -- (\rmark+0.1, 2.7);
\node[orange] at (\rmark, 3) {$dx$};
% Rotationsaxel
\draw[dashed, thick, gray] (0, -0.3) -- (0, 3.3);
\node[gray] at (-0.4, 3) {\small y-axel};
% Formel
\node[draw, fill=white, rounded corners] at (3.5, 2.8) {$dV = 2\pi x \cdot f(x) \cdot dx$};
\end{tikzpicture}
\end{document}
```
$\boxed{V = 2\pi \int_a^b x \cdot f(x) , dx}$
---
## Klassiska exempel
### 1. Sfären
Rotera halvcirkeln $y = \sqrt{R^2 - x^2}$ kring x-axeln.
```tikz
\begin{document}
\begin{tikzpicture}[scale=1.4]
% Axlar
\draw[->, thick, gray] (-2.8,0) -- (2.8,0) node[right] {$x$};
\draw[->, thick, gray] (0,-2.3) -- (0,2.5) node[above] {$y$};
% Sfären (cirkel med skuggning)
\shade[ball color=blue!40!white, opacity=0.8] (0,0) circle (2);
% Konturlinjer
\draw[blue!70!black, very thick] (0,0) circle (2);
\draw[blue!50, thick, dashed] (0,0) ellipse (2 and 0.5);
% Radie
\draw[red, very thick, ->] (0,0) -- (1.41, 1.41);
\node[red] at (1, 0.5) {$R$};
% Gränser
\node at (-2, -0.35) {$-R$};
\node at (2, -0.35) {$R$};
% Formel
\node[draw, fill=white, rounded corners] at (0, -3) {$V = \dfrac{4\pi R^3}{3}$};
\end{tikzpicture}
\end{document}
```
**Beräkning:** $V = \pi \int_{-R}^{R} (R^2 - x^2) , dx = \pi \left[R^2 x - \frac{x^3}{3}\right]_{-R}^{R} = \frac{4\pi R^3}{3}$
---
### 2. Konen
Rotera linjen $y = \frac{r}{h}x$ kring x-axeln.
```tikz
\begin{document}
\begin{tikzpicture}[scale=1]
% Axlar
\draw[->, thick, gray] (-0.5,0) -- (5.5,0) node[right] {$x$};
\draw[->, thick, gray] (0,-2.5) -- (0,2.8) node[above] {$y$};
% Konens yta
\fill[orange!20] (0,0) -- (4.5, 2) -- (4.5, -2) -- cycle;
\shade[left color=orange!40, right color=orange!10] (0,0) -- (4.5, 2) -- (4.5, -2) -- cycle;
% Konturer
\draw[orange!80!black, very thick] (0,0) -- (4.5, 2);
\draw[orange!80!black, very thick] (0,0) -- (4.5, -2);
% Basen (ellips)
\fill[orange!50] (4.5, 0) ellipse (0.3 and 2);
\draw[orange!80!black, thick] (4.5, 0) ellipse (0.3 and 2);
% Mått
\draw[<->, red, very thick] (0, -2.8) -- (4.5, -2.8);
\node[red] at (2.25, -3.2) {$h$};
\draw[<->, green!50!black, very thick] (5, 0) -- (5, 2);
\node[green!50!black] at (5.4, 1) {$r$};
% Etikett
\node[orange!80!black] at (2, 1.5) {$y = \frac{r}{h}x$};
% Formel
\node[draw, fill=white, rounded corners] at (2.25, -4.2) {$V = \dfrac{\pi r^2 h}{3}$};
\end{tikzpicture}
\end{document}
```
**Beräkning:** $V = \pi \int_0^h \left(\frac{r}{h}x\right)^2 dx = \frac{\pi r^2}{h^2} \cdot \frac{h^3}{3} = \frac{\pi r^2 h}{3}$
---
### 3. Torusen
Rotera en cirkel med radie $r$ kring en axel på avstånd $R$.
```tikz
\begin{document}
\begin{tikzpicture}[scale=0.9]
% Torus illustration (tvärsnitt + 3D-antydan)
% Yttre ellips (torusens kontur)
\draw[red!70!black, very thick] (0,0) ellipse (4 and 2);
% Inre ellips (hålet)
\draw[red!70!black, very thick] (0,0) ellipse (2 and 0.8);
% Skuggning övre del
\fill[red!20, opacity=0.6] (0,0) ellipse (4 and 2);
\fill[white] (0,0) ellipse (2 and 0.8);
% 3D-effekt: extra ellipser
\draw[red!50, thick, dashed] (-3, 0) arc (180:360:0.5 and 1.2);
\draw[red!50, thick] (-3, 0) arc (180:0:0.5 and 1.2);
\draw[red!50, thick, dashed] (3, 0) arc (180:360:0.5 and 1.2);
\draw[red!50, thick] (3, 0) arc (180:0:0.5 and 1.2);
% Cirkeln som roteras (till höger)
\begin{scope}[xshift=7cm]
\draw[->, thick, gray] (-0.5,0) -- (4,0) node[right] {$x$};
\draw[->, thick, gray] (0,-2) -- (0,2) node[above] {$y$};
% Rotationsaxel
\draw[dashed, thick, blue] (0, -1.8) -- (0, 1.8);
% Cirkeln
\draw[red, very thick, fill=red!20] (2.5, 0) circle (1);
% Mått
\draw[<->, green!50!black, thick] (0, -1.5) -- (2.5, -1.5);
\node[green!50!black] at (1.25, -1.8) {$R$};
\draw[<->, purple, thick] (2.5, 0) -- (3.5, 0);
\node[purple] at (3.2, 0.3) {$r$};
\node[gray] at (0.4, 1.5) {\small axel};
\end{scope}
% Formel
\node[draw, fill=white, rounded corners] at (0, -3.5) {$V = 2\pi^2 R r^2$};
\end{tikzpicture}
\end{document}
```
---
## Inspirerande exempel
### 4. Vinglaset
Rotera kurvan $y = x^2$ för $0 \leq x \leq 2$ kring y-axeln.
```tikz
\begin{document}
\begin{tikzpicture}[scale=1]
% Axlar
\draw[->, thick, gray] (-2.5,0) -- (2.8,0) node[right] {$x$};
\draw[->, thick, gray] (0,-0.5) -- (0,5) node[above] {$y$};
% Parabeln och dess spegling
\draw[purple!70, very thick, domain=0:2, samples=100] plot (\x, {\x*\x});
\draw[purple!70, very thick, domain=0:2, samples=100] plot ({-\x}, {\x*\x});
% Fyllning för 3D-effekt
\shade[left color=purple!30, right color=purple!10, opacity=0.7]
plot[domain=0:2, samples=50] (\x, {\x*\x}) --
plot[domain=2:0, samples=50] ({-\x}, {\x*\x}) -- cycle;
% Ellipser för djup
\draw[purple!50, thick] (0, 0.5) ellipse (0.7 and 0.15);
\draw[purple!50, thick] (0, 2) ellipse (1.41 and 0.25);
\draw[purple!70, thick] (0, 4) ellipse (2 and 0.35);
% Glas-form antydan
\draw[purple!40, thick, dashed] (0, 4) -- (0, 4.5);
\draw[purple!40, thick] (-0.3, 4.5) -- (0.3, 4.5);
% Mått
\node at (2.2, 4) {$y = 4$};
\node at (2.3, 0.3) {$x = 2$};
% Etikett
\node[purple!80!black] at (1.8, 2) {$y = x^2$};
\end{tikzpicture}
\end{document}
```
**Med skalmetoden:** $V = 2\pi \int_0^2 x \cdot x^2 , dx = 2\pi \int_0^2 x^3 , dx = 2\pi \left[\frac{x^4}{4}\right]_0^2 = \boxed{8\pi}$
---
### 5. Gabriels horn — _Det omöjliga hornet_
> _Oändlig yta, men ändlig volym — kan fyllas med färg men aldrig målas!_
Rotera $y = \frac{1}{x}$ för $x \geq 1$ kring x-axeln.
```tikz
\begin{document}
\begin{tikzpicture}[scale=1.1]
% Axlar
\draw[->, thick, gray] (-0.3,0) -- (7,0) node[right] {$x$};
\draw[->, thick, gray] (0,-1.8) -- (0,2) node[above] {$y$};
% Hornet (övre och undre kontur)
\draw[violet!80!black, very thick, domain=1:6.5, samples=200] plot (\x, {1/\x});
\draw[violet!80!black, very thick, domain=1:6.5, samples=200] plot (\x, {-1/\x});
% Skuggning
\shade[top color=violet!30, bottom color=violet!10, opacity=0.6]
plot[domain=1:6.5, samples=100] (\x, {1/\x}) --
plot[domain=6.5:1, samples=100] (\x, {-1/\x}) -- cycle;
% Ellipser
\draw[violet!70, thick] (1, 0) ellipse (0.1 and 1);
\draw[violet!50, thick] (2, 0) ellipse (0.08 and 0.5);
\draw[violet!40, thick] (4, 0) ellipse (0.06 and 0.25);
% Oändlighetsantydan
\draw[violet!50, thick, ->] (6.5, 0.154) -- (7.2, 0.1);
\draw[violet!50, thick, ->] (6.5, -0.154) -- (7.2, -0.1);
\node at (7.5, 0) {$\cdots$};
% Startpunkt
\node at (1, -0.3) {$1$};
% Etikett
\node[violet!80!black] at (3, 1.3) {$y = \frac{1}{x}$};
% Resultat
\node[draw, fill=yellow!20, rounded corners] at (4, -2.5) {
\begin{tabular}{c}
Volym: $V = \pi$ (ändlig!) \\
Area: $A = \infty$ (oändlig!)
\end{tabular}
};
\end{tikzpicture}
\end{document}
```
**Beräkning:** $V = \pi \int_1^{\infty} \frac{1}{x^2} dx = \pi \left[-\frac{1}{x}\right]_1^{\infty} = \pi(0 - (-1)) = \boxed{\pi}$
---
### 6. Sinusvågen
Rotera $y = \sin(x) + 1.5$ för $0 \leq x \leq 2\pi$ kring x-axeln.
```tikz
\begin{document}
\begin{tikzpicture}[scale=0.85]
% Axlar
\draw[->, thick, gray] (-0.5,0) -- (7.5,0) node[right] {$x$};
\draw[->, thick, gray] (0,-3) -- (0,3.2) node[above] {$y$};
% Övre kontur
\draw[teal!80!black, very thick, domain=0:6.28, samples=200]
plot (\x, {sin(\x r) + 1.5});
% Undre kontur (spegling)
\draw[teal!80!black, very thick, domain=0:6.28, samples=200]
plot (\x, {-sin(\x r) - 1.5});
% Skuggning
\shade[top color=teal!25, bottom color=teal!5, opacity=0.6]
plot[domain=0:6.28, samples=100] (\x, {sin(\x r) + 1.5}) --
plot[domain=6.28:0, samples=100] (\x, {-sin(\x r) - 1.5}) -- cycle;
% Ellipser för 3D
\draw[teal!60, thick] (0, 0) ellipse (0.12 and 1.5);
\draw[teal!60, thick] (1.57, 0) ellipse (0.15 and 2.5);
\draw[teal!60, thick] (3.14, 0) ellipse (0.12 and 1.5);
\draw[teal!60, thick] (4.71, 0) ellipse (0.08 and 0.5);
\draw[teal!60, thick] (6.28, 0) ellipse (0.12 and 1.5);
% Etiketter
\node at (1.57, -0.3) {$\frac{\pi}{2}$};
\node at (3.14, -0.3) {$\pi$};
\node at (4.71, -0.3) {$\frac{3\pi}{2}$};
\node at (6.28, -0.3) {$2\pi$};
\node[teal!80!black] at (5, 2.5) {$y = \sin x + 1.5$};
\end{tikzpicture}
\end{document}
```
---
## Område mellan två kurvor
När området mellan två funktioner roterar:
```tikz
\begin{document}
\begin{tikzpicture}[scale=1.3]
% Axlar
\draw[->, thick, gray] (-0.5,0) -- (4.5,0) node[right] {$x$};
\draw[->, thick, gray] (0,-2) -- (0,2.3) node[above] {$y$};
% Yttre kurvan f(x) - övre
\draw[blue, very thick, domain=0.3:3.5, samples=100] plot (\x, {0.5*sqrt(\x)+0.5});
% Yttre kurvan f(x) - undre (spegling)
\draw[blue, very thick, domain=0.3:3.5, samples=100] plot (\x, {-0.5*sqrt(\x)-0.5});
% Inre kurvan g(x) - övre
\draw[red, very thick, domain=0.3:3.5, samples=100] plot (\x, {0.2*sqrt(\x)+0.2});
% Inre kurvan g(x) - undre
\draw[red, very thick, domain=0.3:3.5, samples=100] plot (\x, {-0.2*sqrt(\x)-0.2});
% Skuggning av området (tvärsnittsring)
\fill[green!30, opacity=0.7] (2.5, 0) ellipse (0.15 and 1.29);
\fill[white] (2.5, 0) ellipse (0.15 and 0.52);
\draw[green!50!black, thick] (2.5, 0) ellipse (0.15 and 1.29);
\draw[green!50!black, thick] (2.5, 0) ellipse (0.15 and 0.52);
% Etiketter
\node[blue] at (3.8, 1.5) {$f(x)$};
\node[red] at (3.8, 0.7) {$g(x)$};
% Formel
\node[draw, fill=white, rounded corners] at (2, -2.8) {$V = \pi \int_a^b \left([f(x)]^2 - [g(x)]^2\right) dx$};
\end{tikzpicture}
\end{document}
```
---
## Snabbguide — Metodval
|Situation|Metod|Formel|
|---|---|---|
|Rotation kring **x-axeln**|Skivmetoden|$V = \pi \int_a^b [f(x)]^2 , dx$|
|Rotation kring **y-axeln**|Skalmetoden|$V = 2\pi \int_a^b x \cdot f(x) , dx$|
|**Mellan två kurvor**|Skivmetoden|$V = \pi \int_a^b ([f]^2 - [g]^2) , dx$|
---
## Sammanfattning
```tikz
\begin{document}
\begin{tikzpicture}
% Skivmetoden box
\node[draw, fill=blue!10, rounded corners, minimum width=6cm, minimum height=2cm] at (0, 0) {
\begin{tabular}{c}
\textbf{Skivmetoden} \\[0.3cm]
$V = \pi \displaystyle\int_a^b [f(x)]^2 \, dx$
\end{tabular}
};
% Skalmetoden box
\node[draw, fill=green!10, rounded corners, minimum width=6cm, minimum height=2cm] at (8, 0) {
\begin{tabular}{c}
\textbf{Skalmetoden} \\[0.3cm]
$V = 2\pi \displaystyle\int_a^b x \cdot f(x) \, dx$
\end{tabular}
};
\end{tikzpicture}
\end{document}
```
> _"Integralen summerar oändligt många infinitesimala volymelement till en exakt volym"_
---
## Se även
- [[Rotationsyta tikz]]
- [[Analysens fundamentalsats]]
- [[Integraler]]